

PolyUrethane Recycling Towards a Smart Circular Economy

Exploring barriers for scale-up: a TIS-perspective on CR of flexible PU foam

Jonas Van Gaubergen

01/12/2022

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 814543

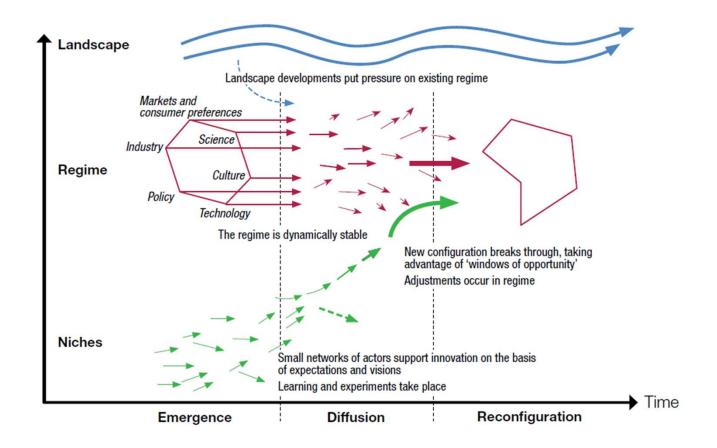
WP5 – System innovation, sustainability assessment & business

- 1. Opening questions
- 2. Introduction
 - 1. Researchers & group
 - 2. Transitions the MLP
 - 3. Research goal
- 3. Research approach
 - 1. Technological Innovation systems
 - 2. Research data
- 4. Exploration of results

Presentation overview

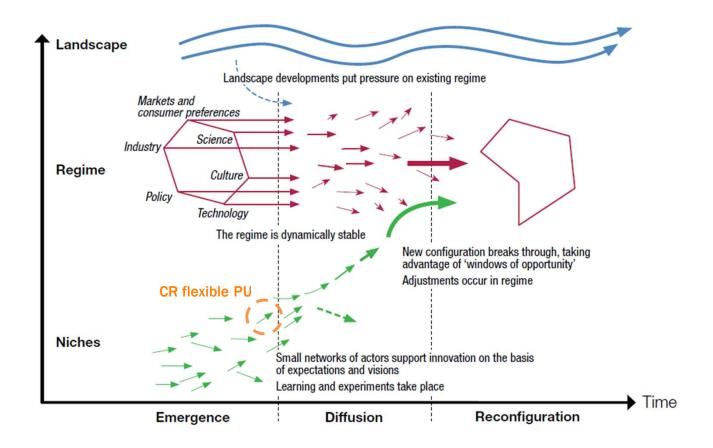
- 1. Opening questions
- 2. Introduction
 - 1. Researchers & group
 - 2. Transitions the MLP
 - 3. Research goal
- 3. Research approach
 - 1. Technological Innovation systems
 - 2. Research data
- 4. Exploration of results

2.1 Researchers & group


Jonas Van Gaubergen, prof.dr. Thomas Block

Centre for Sustainable Development, PSW UGent (<u>www.cdo.ugent.be</u>)

- Inter- and transdisicplinary research center
- Focus on pertinent sustainability issues
- Particular attention to 'sustainability transitions'
 - Transition to the circular economy



2.2 Transitions - the Multi-Level Perspective (MLP)

2.2 Transitions - the Multi-Level Perspective (MLP)

2.3 Research goal

Zoom in on 'niche': chemical recycling for flexible PU foams

*What are the potential obstacles for the further development and break-through of CR technologies for flexible PU foams in the context of the EU?"

Presentation overview

- 1. Opening questions
- 2. Introduction
 - 1. Researchers & group
 - 2. Transitions the MLP
 - 3. Research goal
- 3. Research approach
 - 1. Technological Innovation systems
 - 2. Research data
- 4. Exploration of results

3.1 Technological Innovation Systems (TIS)

- Transition's framework for assessing niche development
- Not only R&D → Systemic view on innovation
 - Various actors: manufacturers, suppliers, users, knowledge institutes, ...
 - Societally embedded: legislation, policy goals, market developments,...
- Framework core: 7 system 'functions' (Hekkert et al. 2007)

3.1 Technological Innovation Systems (TIS)

Example diagnostic questions
 Do the industrial actors innovate sufficiently?
 Is there commercial experimentation by entrepreneurs?
 Is the amount of knowledge development sufficient for the development of the innovation system?
 Is there enough knowledge exchange between science and industry?
 Are there problematic parts of the IS in terms of knowledge exchange?
 Is there a clear vision on how the industry and market should develop?
— Is the current and expected market size sufficient?
– Are there any incentives stimulating demand?
 Are there sufficient human/financial/material resources? If not, does that form a barrier?
 Is there a lot of resistance towards the new technology, the innovation process, procedures,?

- Interviews
 - PUReSmart project partners
 - External actors
- Document analysis
 - Policy documents (e.g. EC documents)
 - Association's white papers, brochures
 - Academic research papers
 - Press releases
- → Function assessment relies heavily on expert knowledge

- 1. Opening questions
- 2. Introduction
 - 1. Researchers & group
 - 2. Transitions the MLP
 - 3. Research goal
- 3. Research approach
 - **Technological Innovation systems**
 - 2. Research data

3.1 Technological Innovation Systems

System functions	Example diagnostic questions
F1) Entrepreneurial	 Do the industrial actors innovate sufficiently?
experimentation	 Is there commercial experimentation by entrepreneurs?
F2) Knowledge development	 Is the amount of knowledge development sufficient for the development of the innovation system?
F3) Knowledge diffusion	 Is there enough knowledge exchange between science and industry?
	 Are there problematic parts of the IS in terms of knowledge exchange?
F4) Guidance of the search	 Is there a clear vision on how the industry and market should develop?
F5) Market formation	 Is the current and expected market size sufficient? Are there any incentives stimulating demand?
F6) Resources Mobilization	 Are there sufficient human/financial/material resources? If not, does that form a barrier?
F7) Counteract resistance to	Is there a lot of resistance towards the new
change/legitimacy creation	technology, the innovation process, procedures,?

Basic scientific knowledge: advanced stage

- Smaller additional developments possible
- Overall deemed sufficient for scale-up

Applied knowledge development: uncertainties

- Sorting
 - Shredding
 - Performance with EoL
- Chemolysis
 - Impact of EoL

Various actors doubt financial viability of recyclates

- High production cost
- No product advantages
 - → Under unchanged conditions, no profitability and limited demand

However: SPI/ESPR including obligation of recycled content (?)

- Fundamental shift in market demand
 - → CR/recyclates become de facto element in PU foam industry

From barriers to opportunities

- > Increasing circular design, both chemically and on product-level
- Increasing knowledge sharing in function of reaching societal goals
- Prioritizing less energy-intensive processes
- Increasing producer responsibility to facilitate waste collection and distribution
- > Introducing more restrictive policy frameworks: push away from linear

PUReSmart RESTRICTED - Under Consortium Agreement, Confidential until Dec 31st 2026

Thank you

Any question?

