

PolyUrethane Recycling Towards a Smart Circular Economy

Smart design

Towards foam-to-foam recycling via the use of Covalent Adaptable Networks

Lucie Imbernon & Johan Winne dissemination workshop 01/12/2022

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N ° 814543

Strategic Place within PUReSmart Project

• Smart Sorting:

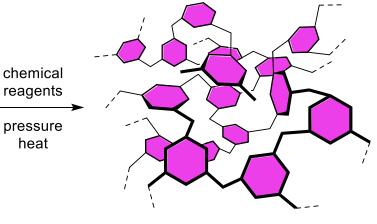
separate end-of-life PU foam waste streams (by chemical class)

• Smart Chemolysis:

turn PU waste into new PU building blocks (chemical recycling)

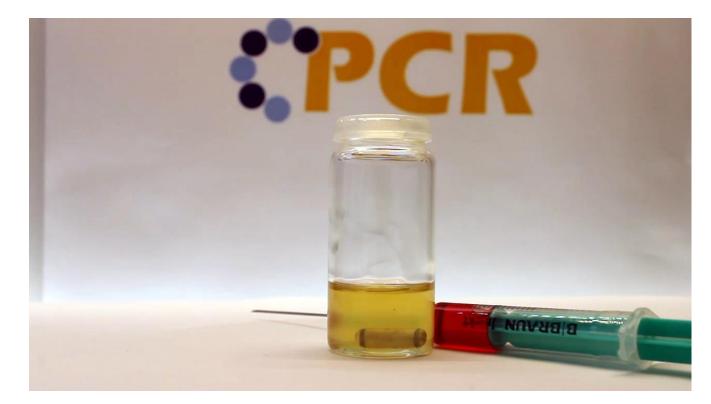
• Smart Design:

(re)design PU foam products that can be re-used as raw material


Intro: Synthetic Thermosetting Materials

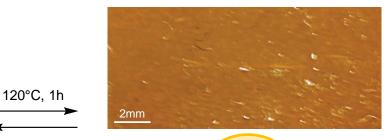
cheap chemical building blocks (monomers)

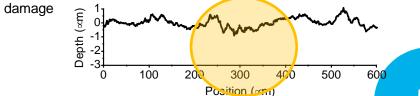
Leo Baekeland, inventor of synthetic thermoset materials



3-dimensional network material = one big solid molecule

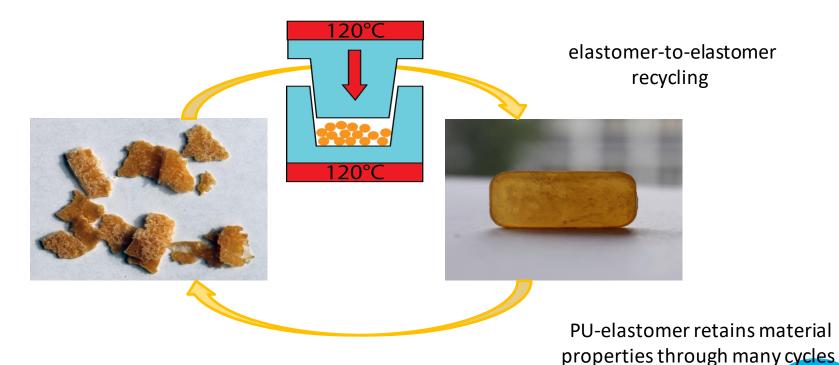
Main concept: Covalent Adaptable networks





Covalent Adaptable PU: healing

= PU-elastomer with covalent adaptable cross-links (CAPU-elastomer)


1 h, 120°C

PUReSmort

Covalent Adaptable PU: recycling

Billiet S., De Bruycker K., Driessen F., Goossens H., Van Speybroeck V., Winne J. M., Du Prez F. E. *Nature Chem.*, **2014**, *6*, 815 – 821.

Smart CAPU foam Design: Main Objectives

- Screen lab-scale technologies for PU thermoset recycling as covalent adaptable PU (CAPU) with focus on industrial relevance (no solvent/cheap materials/...)
- Production of PU elastomer sheets for probing mechanical properties and recycling (<u>elastomer-to-elastomer</u> reprocessing) for further selection of CAPU technology
- Scale-up the most successful chemical technologies for <u>CAPU foam</u> synthesis, with a focus on <u>foam-to-elastomer</u> recycling trials (100 gram)
- Use supercritical CO₂-technology for foaming CAPU elastomers: <u>elastomer-to-foam</u>
- ScCO₂ -based refoaming process of recycled CAPU foams: <u>foam-to-foam</u>
- Pilot scale/industrial demonstration scale production of best CAPU comonomers for larger scale PU foam production with improved intrinsic recycling properties

Smart CAPU foam Design: Hurdles

- NO commercially available (co)monomers that allow large scale CAPU production are known or available at start of project (so their cost is unclear)
- ONLY <u>elastomer-to-elastomer</u> reprocessing has ever been demonstrated for CAPU and other covalent adaptable networks (industrially only for high T_g thermosets)

CAPU lab scouting: Main Results

- Over 20 different comonomers were prepared and screened, belonging to all known classes of CAPU chemistries that have potential in PU markets.
- Two main technologies were retained as most promising for scale-up:
 - Thiourethane technology (developed in PUReSmart)
 - TAD-indole technology (developed at UGent, further refined in PUReSmart)
- Selection criteria: cost/scalability/PU material properties/recycling properties



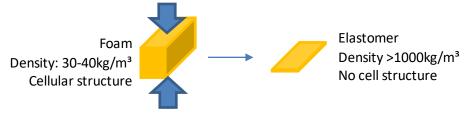
Polythiols as CAPU comonomers

- Commercially available polythiols (used in PU coatings)
 - Successful in elastomer recycling trials (less good than TAD-indole)!
 - Technical issues: very rigid elastomers/foams (only low MW)
 - Technical issue: smell
- PUReSmart innovation
 - Prepared non-smelly, less rigid, long chain polythiols from normal PU foam polyols (10 kg)
 - Can be used in flexible foam formulations
 - Technical issue: a bit too dynamic?

TAD-indole based polyol CAPU comonomers

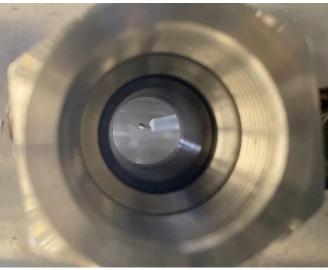
- Known TAD-indole CAPU comonomers (developed previously @UGent)
 - Most promising in PU recycling trials!
 - Technical issues:
 - \rightarrow higher cost/effort of synthesis!
 - ightarrow available TAD-indoles not compatible with flexible PU foam
- PUReSmart innovation
 - First pilot scale synthesis (50kg) of TAD-based cross-linker
 - Stability studies show industrial potential of the monomer/cross-linker
 - First demonstration scale (1 kg) of liquid TAD-indole based polyol
 - Technical issue: polyol too costly to be produced on larger scale

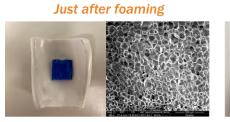
Polythiol CAPU foam trials



	Ref							
Standard polyol	100	98	95	90	85	80	80	75
Commercial polythiol	0	2	5	10	15	20	20	25
Density (kg/m³)	+	+	+	+	+	+	+	-
CLD hardness 40% (kPa)	+	+	+	+	+	+	+	+
Air resistance (cm H2O)	+	+	+	+	+	+	+	+
Compression set 50% at 70°C (%)	+	+	+	+	+	+	+	-
WCS 50°C at 95%RH (%)	+	+	+	+	+	+	+	+
Ball rebound (%)	+	+	+	+	+	+	+	+
Elongation at break (%)	+/-	+	+	+/-	+/-	+/-	+/-	+/-
Tensile strengh (kPa)	+/-	+	+	+/-	+/-	+/-	+/-	+/-
Tear resistance (N/cm)	+/-	+	+/-	-	-	-	-	-

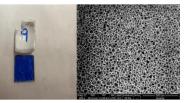
Polythiol CAPU foam-to-elastomer recycling


- Foam-to-elastomer recycling
 - Compression molding
 - x min, xbar, x°C

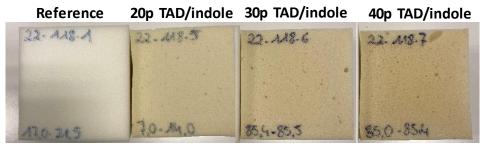


	1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle	6th cycle	7th cycle
Ref							
100% SH	RECTICEL	RECTICS	RECTICE	ARCHOR	RELIMENT	AROLES	A Senter

Polythiol CAPU elastomer-to-foam trials


- scCO2 foaming of Thiourethane elastomers (UCLM)
 - Series of elastomers based on PPG1000 + TDI + β-trithiol (commercial small thiol molecule)

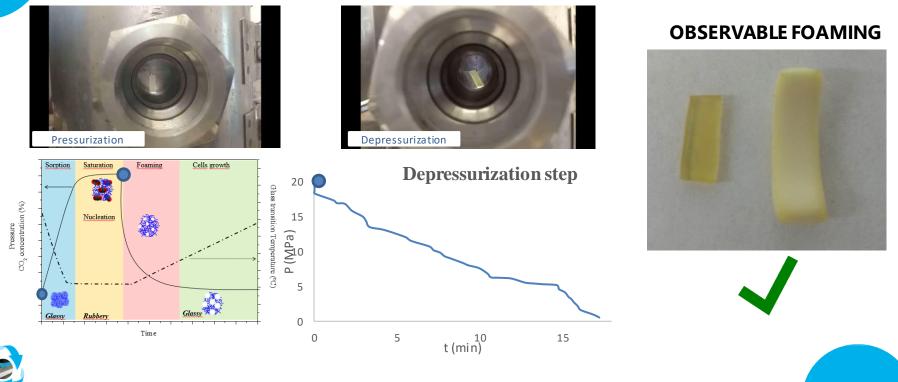
Density: 90 Kg/m3


24 h after foaming

Density: 534 Kg/m3

TAD-indole CAPU foam trials

	l	I 2022-0118	1	5	6	7
	Polyol		100	80	70	60
TAD/ind	ole crosslinker v3	.0		20	30	40
Blow off		Scale <mark>0</mark> -5	4	4	1	1
Settling			no	5,40%	3,30%	2,70%
Density	EN/ISO 875 M1	kg/m³	+	+	+	+
Air resistance	C&TF/T.015.0	cm H2O (min- max)	+	+	-	-
CLD Hardness 40%	EN/ISO 3386/1 M1	kPa	+	+	+	+


TAD-indole foam-to-elastomer recycling

	1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle	6th cycle	7th cycle
Ref	RECTICEL						
20/80	recificat	REDIC					
30/70	RECISI	RECICIENT					
40/60		RECICE		ur criered			

PUReSmart

TAD-indole elastomer-to-foam trials

PUReSmort

Foam to foam?

- Until now, none of the CAPU elastomers obtained from recycling CAPU foams could be re-foamed.
- It seems that the total crosslink density has an influence on the "foamability" of the elastomer
- Due to the trifunctional raw materials and the excess of isocyanates, PU foams are usually highly crosslinked

Conclusions

- Two promising and (in principle) industrially scalable CAPU technologies have been developed for improving the recyclability of PU products
- TAD-indole polyols are found to be best performing but are not cost-effective in PU foams, but can be more cost-effective in other PU or thermoset matrices
- Polythiols are on the PU coating market and have been recognized for their potential to improve intrinsic recyclability of various PU products
- First proof-of-principle for physical blowing of a fully cross-linked PU elastomer opens potential for closing the cycle in thermosetting foam materials.
- Achieving good foam properties is possible, but this comes at the cost of lower recyclability. A balance must be found. The road for industrialization of the CAPU concept may be still long, and can be niche-dependent.

PUReSmart RESTRICTED - Under Consortium Agreement, Confidential until Dec 31st 2026

Thank you

Any question?

WP1 – CAPU co-monomer